Biodegradable Nanoparticles of mPEG-PLGA-PLL Triblock Copolymers as Novel Non-Viral Vectors for Improving siRNA Delivery and Gene Silencing

نویسندگان

  • Jing Du
  • Ying Sun
  • Qiu-Sheng Shi
  • Pei-Feng Liu
  • Ming-Jie Zhu
  • Chun-Hui Wang
  • Lian-Fang Du
  • You-Rong Duan
چکیده

Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. Various physicochemical properties of mPEG-PLGA-PLL NPs, including morphology, size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by scanning electron microscope, particle size and zeta potential analyzer, and high performance liquid chromatography. The levels of siRNA uptake and targeted gene inhibition were detected in human lung cancer SPC-A1-GFP cells stably expressing green fluorescent protein. Examination of the cultured SPC-A1-GFP cells with fluorescent microscope and flow cytometry showed NPs loading Cy3-labeled siRNA had much higher intracellular siRNA delivery efficiencies than siRNA alone and Lipofectamine-siRNA complexes. The gene silencing efficiency of mPEG-PLGA-PLL NPs was higher than that of commercially available transfecting agent Lipofectamine while showing no cytotoxicity. Thus, the current study demonstrates that biodegradable NPs of mPEG-PLGA-PLL triblock copolymers can be potentially applied as novel non-viral vectors for improving siRNA delivery and gene silencing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery.

A amphiphilic block copolymer composed of conventional monomethoxy (polyethylene glycol)-poly (d,l-lactide-co-glycolide)-poly (l-lysine) (mPEG-PLGA-b-PLL) was synthesized. The chemical structure of this copolymer and its precursors was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), (1)H Nuclear Magnetic Resonance ((1)H NMR) and Gel Permeation Chromatography (GPC). The copolymer wa...

متن کامل

Biodegradable Tri-Block Copolymer Poly(lactic acid)-poly(ethylene glycol)-poly(l-lysine)(PLA-PEG-PLL) as a Non-Viral Vector to Enhance Gene Transfection

Low cytotoxicity and high gene transfection efficiency are critical issues in designing current non-viral gene delivery vectors. The purpose of the present work was to synthesize the novel biodegradable poly (lactic acid)-poly(ethylene glycol)-poly(l-lysine) (PLA-PEG-PLL) copolymer, and explore its applicability and feasibility as a non-viral vector for gene transport. PLA-PEG-PLL was obtained ...

متن کامل

In vitro non-viral gene delivery with nanofibrous scaffolds

Extracellular and intracellular barriers typically prevent non-viral gene vectors from having an effective transfection efficiency. Formulation of a gene delivery vehicle that can overcome the barriers is a key step for successful tissue regeneration. We have developed a novel core-shelled DNA nanoparticle by invoking solvent-induced condensation of plasmid DNA (beta-galactosidase or GFP) in a ...

متن کامل

Small interfering RNA; principles, applications and challenges--

Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...

متن کامل

Multifunctional Triblock Nanocarrier (PAMAM-PEG-PLL) for the Efficient Intracellular siRNA Delivery and Gene Silencing

A novel triblock poly(amido amine)-poly(ethylene glycol)-poly-l-lysine (PAMAM-PEG-PLL) nanocarrier was designed, synthesized, and evaluated for the delivery of siRNA. The design of the nanocarrier is unique and provides a solution to most of the common problems associated with the delivery and therapeutic applications of siRNA. Every component in the triblock nanocarrier plays a significant rol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012